Friday, 2 June 2017

PROPOSAL PENELITIAN

PROPOSAL PENELITIAN



Aplikasi e-Government untuk Tata Kelola Yang Baik: Dari Perencanaan Strategis SI ke Pengembangan SI (e-Government Application For Good eGovernance from IS Strategic Plan to IS Development)


DAFTAR ISI
1. ABSTRAK....................................................................................................................... 1
2. PENDAHULUAN............................................................................................................. 1
3. PERUMUSAN MASALAH................................................................................................ 5
4. METODOLOGI................................................................................................................. 9
5. RANCANGAN (DESIGN) PENELITIAN........................................................................... 12
6. HASIL YANG DIHARAPKAN.......................................................................................... 15
7. PERSONIL PELAKSANA PENELITIAN (PENELITI DAN TEKNISI) ................................. 15
8. BIBLIOGRAFI................................................................................................................ 18
9. JADWAL PENELITIAN
Lampiran 1. Personalia.........................................................................................................20
Lampiran 2. Rincian Anggaran...............................................................................................21
Lampiran 3. Kegiatan........................................................................................................... 23


1. ABSTRAK

Tidak dapat dipungkiri, bahwa informasi merupakan komoditi strategis di abad ini. Globalisasi informasi memaksa setiap insan baik individu ataupun kelompok, baik swasta maupun pemerintah, untuk memperhitungkan sistem informasi yang akan diterapkan supaya tetap kompetitif di era globalisasi. Dalam hal ini, penerapan strategi yang tepat memungkinkan setiap organisasi swasta maupun instansi pemerintah untuk lebih meningkatkan local content dan meningkatkan bargaining power terhadap masyarakat dan hubungan antar instansi juga hubungan terhadap negara lain.

Sampai saat ini, banyak kegiatan yang dilakukan pemerintah secara terpisah, tanpa adanya suatu perencanaan yang terintegrasi antara satu kegiatan dengan kegiatan lainnya. Contoh klasik, penggalian jalan raya untuk telepon/listrik/air minum yang tidak pernah tuntas, baik di kota metropolitan Jakarta maupun kota-kota besar lainnya. Selain itu, ada pertanyaan yang mesti dijawab dengan suatu tindakan, dapatkah masyarakat umum dengan mudah mengetahui/mengakses berbagai informasi, pengetahuan teknologi tepat guna, perundangan, yang berkaitan langsung dengan kehidupan sehari-hari masyarakat banyak? Semua ini penting dipertimbangkan dalam membangun sistem informasi nasional yang memampukan pemerintah agar lebih kompetitif. Dua faktor/parameter utama yang perlu diperhitungkan dalam strategi pengembangan sistem informasi nasional adalah SDM yang berkualitas dan alternatif sistem/teknologi yang digunakan.

Sering sekali dalam pengembangan sistem informasi, setiap instansi pemerintah melakukan perencanaan sendiri-sendiri, tanpa adanya koordinasi yang saling mendukung. Akibatnya dalam penerapannya, terjadi pemborosan anggaran karena setiap bagian membuat inisiatif sendiri tanpa ada suatu perencanaan yang baik.

Disamping itu juga, lemahnya dukungan secara politik, kurangnya perhatian terhadap pentingnya sistem informasi dan juga lemahnya kepemimpinan. Hal ini menyebabkan penerapan sistem informasi dan teknologi informasi menjadi cost center yang kurang bermanfaat secara optimal.

Kajian ini bertujuan untuk menghasilkan suatu panduan, bagaimana penerapan aplikasi eGovernment
untuk tujuan good governance dengan menggunakan metodologi tertentu dari proses perencanaan strategis sampai tahap pengembangan sistem informasi e-Government.

2. PENDAHULUAN

Dari era industri ke era informasi, adalah lompatan besar dalam peradaban manusia. Pada era informasi, suatu informasi merupakan komoditi strategis yang dapat berperan menghidupkan suatu perusahaan atau justru mematikannya. Globalisasi informasi memaksa setiap insan baik individu ataupun kelompok, baik swasta maupun pemerintah, untuk memperhitungkan sistem informasi yang akan diterapkan supaya tetap kompetitif di era globalisasi.

Dalam  kajian  Kerangka  Teknologi  Informasi  Nasional  (National  IT  Framework)  yang dilakukan baru‐baru ini, salah satu pilar yang segera harus dibentuk adalah Electronic Government  (E­Government)  for  Good  Governance  [BAP01]  dengan  tujuan  dapat mempercepat  terbentuknya suatu  pelaksanaan  pemerintahan  yang  baik,  efisien,  dan efektif. Walaupun kata‐kata E­Government sudah sering diseminarkan dan didiskusikan, tetapi di berbagai kalangan akademis, pengusaha, dan bahkan pemerintah mempunyai pemahaman  yang  berbeda  mengenai  E­Government [HAS01].  Secara  sederhana Heeks dalam [HAS01] mendefinisikan E­Government sebagai berikut: “Kegiatan yang dilakukan oleh pemerintah dengan menggunakanTeknologi Informasi (TI) untuk memberikan layanan kepada masyarakat”.

Dari definisi tersebut, terlihat bahwa tujuan utama E­Government adalah meningkatkan efisiensi  dan kualitas  layanan.  Menurut  Heeks,  hampir  semua  lembaga  pemerintah  di dunia  ini,  mengalami ketidakefisienan,  terutama  di  negara  yang  sedang  berkembang. Pungutan  liar,  pemasukan  dan pengeluaran  uang  yang  tidak  dilaporkan,  antrian masyarakat  di  pusat‐pusat  layanan  publik,  dan lain‐lain,  merupakan  beberapa  wujud ketidakefisienan tersebut, dimana banyak sekali resources yang terbuang percuma.

Lebih  rinci lagi, Agarwal dalam  [HAS01] membagi  pengertian E­Government ke dalam lima tingkatan,  yang  semakin  tinggi  tingkatannya,  semakin  kompleks  permasalahan yang akan dihadapi.

  1. Tingkatan yang paling awal adalah apa yang disebut dengan E­Government untuk menunjukkan “wajah”  pemerintah  yang  baik  dan  menyembunyikan kompleksitas yang ada di dalamnya. Hal ini ditandai dengan munculnya berbagai web site yang cantik pada hampir semua institusi pemerintah. Pada dasarnya, EGovernment tingkat awal ini masih bersifat menginformasikan tentang apa dan siapa  yang berada di dalam institusi  tersebut. Dengan  kata lain, informasi yang diberikan  kepada  masyarakat  luas,  masih  bersifat  satu  arah.  Kondisi  EGovernment yang masih berada pada tahap awal ini belum bisa digunakan untuk membentuk suatu pemerintahan dengan Good Governance.
  2. Tingkat kedua dari E­Government, mulai ditandai dengan adanya transaksi dan interaksi secara online antara suatu institusi pemerintah dengan masyarakat. Misalnya,  masyarakat  tidak  perlu lagi  antri  membayar  tagihan  listrik, memperpanjang  KTP,  dan  lain‐lain.  Semuanya  dapat dilakukan  secara  online. Usaha ke arah ini sudah mulai dilakukan oleh beberapa institusi dipusat maupun di daerah. Kabupaten Takalar merupakan salah satu contoh daerah  yang sudah mulai menerapkan layanan satu atap terhadap masyarakatnya. Komunikasi dua arah antara institusi pemerintah dengan masyarakat sudah mulai terjalin secara online. 
  3. Level  ketiga  dari E­Government, memerlukan kerja  sama  (kolaborasi)  secara online  antar beberapa  institusi  dan masyarakat.  Apabila masyarakat  sudah bisa  mengurus  perpanjangan KTP‐nya  secara  online,  selanjutnya  mereka  tidak perlu  lagi  melampirkan  KTP‐nya  untuk mengurus  Pasport  atau  membuat  SIM. Dalam hal ini perlu kerja sama antara Kantor Kelurahan yang mengeluarkan KTP dengan  Kantor  Imigrasi  yang  mengeluarkan  Pasport atau  Kantor  Polisi  yang mengeluarkan SIM. 
  4. Level  keempat  dari  E­Government  sudah  semakin  kompleks.  Bukan  hanya memerlukan kerja sama antarinstitusi dan masyarakat,  tetapi juga menyangkut arsitektur  teknis  yang semakin  kompleks.  Dalam  level  ini,  seseorang  bisa mengganti informasi yang menyangkut dirinya hanya dengan satu klik, dan pergantian  tersebut  secara  otomatis  berlaku  untuk setiap institusi  pemerintah yang  terkait.  Misalnya,  seseorang  yang  pindah  alamat,  dia  cukup mengganti alamatnya  tersebut  dari  suatu  database  milik  pemerintahan  yang  besar,  dan secara otomatis KTP, SIM, Pasport dan lain‐lainnya ter‐update.
  5. Level kelima, dimana pemerintah sudah memberikan informasi yang terpaket (packaged information)  sesuai  dengan  kebutuhan  masyarakat.  Dalam  hal  ini, pemerintah sudah bisa memberikan apa yang disebut dengan “information­push” yang berorientasi kepada masyarakat. Masyarakat benar‐benar seperti raja yang dilayani  oleh  pemerintah.  Apa  saja  yang  menjadi kebutuhan  masyarakat,  EGovernment pada level lima ini mampu menyediakannya.

Disamping  itu  Forman  mendefinisikan  E­Government  berdasarkan  interaksi penggunanya sebagai berikut [FOR01]:
  • G2C  (Government  to  Citizen),  E­Government  yang  diperuntukkan  bagi  layanan publik kepada masyarakat.
  • G2B (Government to Business), E­Government yang diperuntukkan bagi kalangan bisnis, mengurangi birokrasi dalam usaha.
  • G2G  (Government  to  Government),  E­Government  yang  diperuntukkan  untuk meningkatkan komunikasi dan koordinasi antar instansi pemerintah.

Dari hasil survei oleh [WIN03] terhadap 36 situs web yang mendapatkan penghargaan EGovernment Award 2003 yang diadakan oleh Warta Ekonomi No 22/XIV/25 September 2002, diperoleh kesimpulan bahwa 99,99% situs web yang diklaim sebagai bentuk aplikasi EGovernment baru sampai pada tingkat awal yaitu penampakan “wajah” pemerintah Dati I dan II. Informasi “satu arah” yang ditampilkan sangat bervariasi, sehingga sulit dilihat tingkat kemanfaatan situs-situs tersebut untuk melakukan koordinasi maupun untuk pelayanan masyarakat.

Sementara  itu,  di  beberapa  negara  Eropa  dan  Amerika  sudah  mulai  menerapkan  EGovernment pada  level  keempat,  dimana  mereka  hanya  mengumpulkan  cukup  sekali saja informasi mengenai masyarakatnya  [FOR02,  MOO00,  JAC01, WIM01].    Salah  satu penerapan  E­Government  yang bisa  mencakup  pengertian  menurut  [HAS01]  dan [FOR01]  adalah  penerapan  sistem kependudukan.    Permasalahan  kependudukan merupakan  salah  satu isu  yang  dapat memanfaatkan  konsep E­Government. Beberapa negara Eropa dan Asia seperti Inggris, Austria, dan Singapura telah menerapkan sistem E­Government untuk melayani kebutuhan penduduknya [FIS01, AIC01, ANO01, MOO00].

Seperti  halnya  di  negara  lain,  di  Indonesia  juga  menghadapi  masalah  kependudukan yang cukup  kompleks.  Departemen  Dalam  Negeri  (Depdagri),  Badan  Pusat  Statistik (BPS),  Komisis Pemilihan  Umum  (KPU),  dan  Badan  Koordinasi  Keluarga  Berencana (BKKBN)adalah  antara lain  merupakan  instansi‐instansi  yang  melakukan  pendataan penduduk di Indonesia. Namun data yang dikumpulkan masih banyak yang merupakan hasil perhitungan proyeksi dan bersifat agregasi [DAR01]. Kelengkapan dan konsistensi datanya  juga  sangat  diragukan  karena  bisa  saja seseorang terdata  dan  tercatat  lebih dari  satu  kali di daerah  yang berbeda  yang disebabkan lemahnya koordinasi di dalam lembaga yang melakukan pendataan tersebut. Hal yang lebih mengkhawatirkan adalah adanya perbedaan data yang didapat oleh instansi‐instansi yang berwenang melakukan pendataan,  ini    dikarenakan  metode  yang  digunakan  untuk  melakukan  pendataan penduduk pada  setiap instansi  berbeda‐beda.  BPS misalnya, melakukan  sensus  setiap sepuluh  tahun  sekali.

Namun  dalam  interval  waktu  tersebut,  data  yang  berhasil dikumpulkan  masih  sulit  menjangkau daerah‐daerah  terpencil.  Sedangkan  Depdagri melakukan  pendataan  penduduk  melalui SISKOMDAGRI.  Komisi  Pemilihan  Umum (KPU)  baru  baru  ini  melakukan  sensus  penduduk pemilih.    Sensus  untuk  pemilih  ini dilakukan  5  tahun  sekali.  Berbagai  instansi  lain  seperti Departemen  Pendidikan Nasional  (Depdiknas),  Departemen  Tenaga  Kerja  dan  Transmigrasi (Depnakertrans), dan  Departemen  Sosial  (Depsos)  juga  memerlukan  data  kependudukan. Instansi‐instansi  tersebut akan mengalami kesulitan dalam menentukan program kerjanya jika tidak didukung oleh data kependudukan yang akurat. Akan sulit bagi Depdiknas untuk merencanakan program wajib belajar jika tidak ada data yang akurat mengenai jumlah penduduk usia sekolah.

Basisdata kependudukan yang ada pada saat ini belum siap pakai dan tidak memenuhi kebutuhan setiap instansi. Untuk memenuhi  kebutuhan  setiap instansi, mereka masih menggunakan basisdata masing‐masing. Jadi basisdata yang ada belum terintegrasi dan tidak mencerminkan data penduduk secara keseluruhan, yang dapat digunakan secara bersama‐sama [ZUL02]. Selain  itu  proses penduduk  yang  ingin  mendapatkan  layanan  yang  berkaitan  dengan dokumen  kependudukannya juga  tidak  efisien.  Penduduk  harus  datang  ke  kantor instansi  yang  bersangkutan  untuk mengurus  dokumen  yang mereka  butuhkan,  belum lagi terhalangani oleh birokrasi di instansi tersebut.

Oleh  karena  itu  diperlukan  suatu  sistem  informasi  (E­Government)  yang  bersifat permanen  yang mampu  melakukan  proses  registrasi  penduduk,  berisikan  basisdata kependudukan  yang terintegrasi  yang  dapat memenuhi  kebutuhan  setiap instansi  dan siap pakai setiap saat. Setiap instansi dapat menggunakan basisdata kependudukan ini secara  bersama‐sama  untuk  kebutuhan yang  berbeda. Disamping itu  sistem informasi ini  juga  dapat  dimanfaatkan  untuk  melayani penduduk  yang  membutuhkan  dokumen kependudukannya.  Penelitian  ini  bertujuan  untuk meneliti  dan  merancang  serta berusaha mengimplementasikan  sistem informasi  kependudukan  di Indonesia  dengan mempelajari pengalaman negara‐negara lain yang telah menerapkan sistem tersebut. EGovernment yang dikembangkan ini diharapkan termasuk paling tidak pada level ketiga dari penggolongan E­Government menurut Agarwal diatas.


3. PERUMUSAN MASALAH

Dari uraian pada bagian pendahuluan terlihat bahwa masalah yang sering dihadapi oleh institusi dalam penerapan sistem informasi e‐Government  di Indonesia adalah:
  • Inisiatif TI masih terpencar, akibatnya pemborosan
    • Dalam penerapan e-Government, masih banyak instansi pemerintah yang berpikir, setelah menentukan critical success factors, masing-masing bagian atau departemen langsung membuat strateginya masing-masing kemudian dirinci menjadi kegiatan yang bersifat taktis operasional. Salah satunya pengadaan perangkat teknologi informasi yang bila tidak dilakukan secara terintegrasi, kemungkinan pemborosan anggaran sangat tinggi. Padahal hasil yang didapatkan tidak sesuai dengan investasi yang telah dikeluarkan.
  • Lack koordinatif
    • Setiap instansi memiliki keinginan yang berbeda-beda dalam penerapan sistem informasi. Tidak terjalinnya koodinasi yang baik antar instansi mengakibatkan pelaksanaan penerapan sistem informasi dan teknologi informasi tidak berjalan dengan efektif. Karena masing-masing berjalan sendiri tanpa interaksi antar satu bagian dengan bagian lainnya.
  • Lack detail requirement
    • Keinginan yang terlalu umum mengakibatkan hasil yang didapatkan tidak spesifik. Karena pada awalnya produk atau jasa yang diinginkan tidak begitu jelas, sehingga setiap individu/departemen yang terlibat tidak tahu persis hasil apa yang diinginkan sebagai keluaran dari suatu proyek aplikasi e-Government. Disamping itu juga, manfaat yang seharusnya didapatkan oleh masyarakat (users) secara signifikan tidak dapat dipenuhi. 
  • Lack political support
    • Dukungan secara politik sangat mempengaruhi berhasil-tidaknya suatu penerapan aplikasi sistem informasi. Pada kenyataannya suasana politik, terutama yang berkaitan dengan: dukungan dan alokasi anggaran, yang lemah dalam setiap rencana penerapan sistem informasi.
  • Lack of awareness
    • Kurangnya kepedulian terhadap keberhasilan e-Government. Pemimpin yang bertanggung jawab dalam penerapan e-Government terkadang kurang memahami kepentingan dari masing-masing stakeholder yang ada dan tidak mau mencoba melakukan kolaborasi agar seluruh perbedaan kepentingan yang dimaksud dapat menuju kepada satu arah pencapaian visi dan misi e-Government (konvergensi). Setiap pemimpin yang bertanggung jawab dalam pengembangan e-Government harus memahami bahwa pihak-pihak yang dianggap sebagai stakeholder utama dalam proyek e-Government antara lain: pemerintah (lembaga terkait dengan seluruh perangkat manajemen dan karyawannya), sektor swasta, masyarakat, lembaga-lembaga swadaya masyarakat, perusahaan, dan lain sebagainya. Terlepas dari bermacam ragamnya stakehoder yang ada, yang sering terlupakan bahwa pada akhirnya yang akan merasakan manfaat atau berhasil tidaknya e-Government yang dilaksanakan adalah pelanggan.
  • Lack leadership
    • Faktor kepemimpinan biasanya melekat pada setiap orang yang bertanggung jawab sebagai pemimpin dari penyelenggaraan suatu penerapan sistem informasi. Namun masih banyak kelemahan dalam hal mengelola:
      • Beragam tekanan politik yang terjadi terhadap penerapan aplikasi e-Government baik dari kalangan yang optimis maupun yang pesimis;
      • Kurangnya sumber daya yang dibutuhkan, seperti misalnya sumber daya manusia, finansial, informasi, peralatan, fasilitas, dan
      • Sejumlah kepentingan dari berbagai kalangan (stakeholders) terhadap e-Government yang sedang atau akan dilaksanakan.
4. METODOLOGI

Metodologi yang digunakan dalam penelitian ini adalah meliputi beberapa tahapan seperti terlihat pada Gambar 1.


1. Identifikasi masalah

Pada tahap ini dilakukan identifikasi terhadap permasalahan yang ada. Dari permasalahan tersebut akan dicoba dibuat hipotesis, kemudian dilakukan penelitian dan uji coba untuk membuktikan hipotesis tersebut. Permasalahan yang telah diidentifikasi sampai saat ini dapat dilihat pada bagian perumusan masalah. Sedangkan hipotesis penelitian dapat dilihat pada bagian hipotesis dan manfaat diatas.

2. Pengumpulan data dan sumber pendukung (literatur)

Pengumpulan  literatur  yang  mendukung  penelitian  dilakukan  pada  tahap  ini. Literatur‐literatur diambil  dari  penelitian‐penelitian  sebelumnya  maupun  dari jurnal‐jurnal ilmiah, baik dalam negeri maupun luar negeri. Salah satu Literatur yang dijadikan acuan dalam penelitian ini adalah tulisan mengenai E­Government yang  ditulis  oleh  Hasibuan  [HAS01].  Sedangkan  literatur  lainnya berkaitan dengan  E­Governmen  dan  khususnya  mengenai  kependudukan,  seperti  “Grand Design Sistem Informasi KPU”, “National IT Framework”, “Strategi E­Government” di  Amerika  Serikat serta  penerapan  E‐Government  di  beberapa  negara  Eropa [BAP01, FOR02, VIL01, KPU02, WAT01, TAM01, FIS01, MOO00, AIC01, WIM01]. 

Adapun data yang dipergunakan sebagai sampel untuk penelitian, akan diambil dari BPS yang merupakan data penduduk hasil sensus. Data propinsi DKI Jakarta akan digunakan untuk simulasi pada skala kecil.

3. Analisis Kebutuhan, Perancangan, dan Implementasi

Pada tahap ini akan dilakukan proses analisa kebutuhan sistem, perancangan serat implementasi terhadap sistem yang akan dikembangkan. Hal‐hal yang dilakukan meliputi: 
  • Rancangan Arsitektur Sistem (Architecture System)
  • Rancangan Format Data Masukan atau Form‐form Kependudukan
  • Rancangan Relasi antar entitas (Entity Relationship) basis data
  • Rancangan Diagram alur proses dan data sistem (Data Flow Diagram)
  • Rancangan Antar muka pemakai (User Interface)
4. Analisis dan Uji Coba Sistem

Setelah  dilakukan  perancangan  dan  sistem  diimplementasikan,  kemudian  akan dilakukan tahapan uji  coba. Uji  coba  direncanakan  dilakukan  dalam  dua  tahap. Pertama  uji  coba  internal,  dimana sistem  akan diujicobakan dalam  lingkungan terbatas dan sebagai tester‐nya adalah  tim pengembang sendiri. Data‐data yang digunakan  pada  tahap  uji  coba  tersebut  merupakan  data  propinsi  DKI Jakarta yang  diperoleh  dari  BPS.  Selanjutnya  dilakukan  integrasi  data  dari  beberapa propinsi. Kemudian  pada  tahapan  kedua,  dilakukan  uji  coba  eksternal,  dimana sistem akan diuji cobakan pada salah satu instansi yang ada, misalnya kelurahan  tertentu,  dan  sebagai  tester‐nya  adalah pihak dari  instansi  tersebut.  Setelah diujicobakan  maka  dilakukan  proses  analisa  kembali  apakah sistem  yang dibangun  sesuai  dengan  kebutuhan,  untuk  kemudian  dilakukan  proses perbaikan.

5. Pembuatan Paket Sistem (Installer)

Setelah sistem diimplementasikan, dan diuji coba maka langkah selanjutnya adalah membuat paket installer dari sistem tersebut sehingga sistem dapat digunakan atau diinstall di tempat lain dengan mudah.

Tahapan 3, 4 dan 5 merupakan tahapan yang erat kaitannya dengan pengembangan perangkat lunak Untuk pengembangan perangkat lunak tersebut, kami gunakan metodologi FAST yang cukup banyak digunakan dalam pengembangan suatu aplikasi. Adapun tahapan-tahapannya adalah sebagai berikut:

  • Investigasi awal: pada tahap ini ditentukan ruang lingkup dari proyek, batasan-batasan, partisipan, biaya dan jadwal. Tahap ini bertujuan untuk menilai kelayakan dari proyek tersebut.
  • Analisa: pada tahap ini dilakukan analisa permasalahan baik dari segi bisnis dan teknologi, yaitu dengan mengidentifikasi permasalahan dan sebab-akibatnya. Dari tahap analisa ini akan diperoleh peluang-peluang yang mungkin dan juga arahan. Beberapa hal yang dilakukan dalam tahap ini antara lain: studi ruang lingkup permasalahan, analisa masalah dan peluang, analisa proses bisnis, serta penyajian temuan-temuan dan rekomendasi.
  • Analisa kebutuhan: Pada tahap ini dilakukan analisa kebutuhan dari sistem yang akan dibuat, yang meliputi tujuan pengembangan sistem dan prioritas-prioritas requirements sehingga menghasilkan suatu pernyataan business requirements system.
  • Analisa keputusan: pada tahap ini dilakukan analisa mengenai solusi teknis yang diperkirakan bisa mengatasi permasalahan sekaligus memenuhi business requirements. Hal tersebut akan digunakan untuk merancang dan mengimplementasikan sistem yang memenuhi segala requirements tersebut.
  • Perancangan: pada tahap ini dilakukan perancangan sistem dari segi teknologi. Hasil tahap ini adalah berupa model data, model proses, dan model antar muka.
  • Konstruksi: pada tahap ini akan dilakukan konstruksi sistem, yang terdiri dari konstruksi basis data dan antar muka serta uji coba terhadap sistem. Tahap konstruksi menghasilkan aplikasi yang siap dijalankan dan memenuhi semua kebutuhan yang ingin dicapai.
  • Implementasi/operasionalisasi: tahap ini nantinya akan dijalankan oleh pemakai dari aplikasi yang dikembangkan.
5. RANCANGAN (DESIGN) PENELITIAN

Pada bagian ini akan dijelaskan mengenai rancangan sistem informasi E-Government. Perancangan yang dibuat meliputi rancangan arsitektur sistem, format data masukan atau form-form kependudukan, relasi antar entitas, diagram alur proses dan data sistem, serta rancangan antar muka pemakai.

Rancangan arsitektur sistem

Departemen Sosial (Depsos) dan BKKBN diharapkan dapat mengakses system ini terutama basis datanya untuk melakukan proses pengubahan data. Sedangkan masyarakat dapat melihat informasi kependudukan dan mendapatkan layanan kependudukan melalui internet. Masyarakat sebagai pengguna system dapat mengakses system darimana saja yang memiliki akses internet, baik dari rumah, kantor, ataupun warnet. Instansi lain, seperti kantor imigrasi, kepolisian, kelurahan, dan lembaga pemerintah lainnya dapat berfungsi sebagai pengguna system sekaligus bertanggung jawab terhadap layanan kependudukan yang melibatkan instansinya. Mereka dapat melihat informasi dari system dan dapat mengakses basis data dari system. Rancangan arsitektur system dapat dilihat pada gambar 2.


Rancangan format data masukan atau form-form kependudukan

Format data masukan atau form-form kependudukan yang disediakan sistem direncanakan mengikuti bentuk form kependudukan yang terdapat pada tiap instansi. Misalnya form permohonan KTP pada kelurahan, form permohonan Akte pada kelurahan, form permohonan SIM pada Kepolisian, form permohonan passport pada kantor imigrasi, dan sebagainya.

Rancangan Entity Relationship

Pembuatan rancangan hubungan antar entitas (entity relationship) bertujuan untuk mengetahui keterkaitan entitas data yang kita gunakan dalam basis data nantinya.

Rancangan alur proses

Pembuatan rancangan alur proses (process modeling) bertujuan untuk mengetahui alur proses bisnis dalam sistem E-Government yang kita kembangkan.

Rancangan Antar muka

Antar muka dirancang untuk memudahkan pemakai dalam mempergunakan sistem yang akan dikembangkan sehingga sistem lebih user friendly. Rancangan antarmuka di sini meliputi:
  • Antarmuka untuk administrator
  • Antarmuka untuk pengguna umum (masyarakat)
  • Antarmuka untuk bagian administrasi

Rancangan Uji Coba

Proses ujicoba sistem E-Government ini bisa dilakukan dalam dua tahap. Tahap pertama bisa dilakukan dengan sebuah simulasi dalam skala kecil untuk melihat sejauh mana efektifitas dan efisiensi dari sistem yang dikembangkan. Beberapa parameter harus dimasukkan ke dalam sistem untuk menggambarkan real world dari sistem.

Tahap kedua merupakan uji coba dalam skala besar yang dilakukan pada lingkungan yang sebenarnya, misalnya saja dalam sistem E-Government di ujicobakan untuk propinsi tertentu. Sebelum tahap kedua dilakukan, terlebih dahulu akan dibuatkan paket installer dari sistem sehingga sekaligus akan diujicobakan paket sistem apakah berjalan dengan baik atau tidak. Selanjutnya jika tahap kedua ini selesai, diharapkan produk yang dihasilkan dapat digunakan lebih jauh oleh instansi lainnya, baik instansi pemerintah atau swasta.

Analisis Hasil Uji Coba

Setelah percobaan selesai dilakukan, akan dilakukan analisa terhadap hasil ujicoba terhadap sistem yang dikembangkan. Proses analisa ini meliputi beberapa hal, yang disesuaikan dengan karakteristik dari sistem informasi. Beberapa hal yang bisa dianalisa antara lain:
  • Kinerja
  • Scalability
  • Reliability
  • Usability

Kinerja

Kinerja yang dinilai adalah response time yang diterima oleh pemakai. Response time di sini dihitung mulai dari saat pemakai memasukkan kueri sampai pada saat pemakai menerima dokumen yang diinginkan dari sistem. Berhubung pengguna system dapat semakin bertambah, kinerja system perlu diperhatikan untuk menjamin kualitas layanan system EGovernment.

Security

Security di sini menunjukkan kemampuan sistem untuk menghadapi serangan-serangan yang tidak dikehendaki, terutama tindakan cracking.

Reliability
Untuk mengetahui reliability dari sistem ini, harus disimulasikan juga proses failure terhadap beberapa komputer pemakai. Dalam keadaaan seperti tersebut, akan dianalisa apakah sistem akan mengalami failure juga secara keseluruhan, sebagian saja atau malah tidak ada pengaruhnya terhadap sistem.

Usability

Untuk mengetahui tingkat usability dari sistem ini, harus dievaluasi tingkat kemudahan pemakai dalam mengoperasikan sistem. Untuk mencapai hal tersebut, bisa diberikan kuesioner untuk mengetahui respon dari pemakai mengenai kemudahan penggunaan terhadap sistem.


6. BIBLIOGRAFI

  • [AND00] Andri, Yofi, "Analisis berbagai Sistem Pengindeksan dan Teknik TemuKembali Informasi", Tesis Magister, Fakultas Pasca Sarjana Universitas Indonesia, 2000.
  • [ANO01] Anonymous, “Connecting Government: Using IT in the Singapore Civil Service”, 2001 
  • [AIC01] Aichholzer, Georg, “Electronic Government Services for the Business Sector in Austria”, Proceeding 12th International Workshop on Database and Expert System Applications, 3-7 September, 2001, Munich, Germany.
  • [BAP01] Bappenas-Fasilkom UI, “National IT Framework”, 2001 
  • [BOD97] Bodhitama, Ananta D. "Implementasi Local Search Engine pada Sistem Temu-Kembali Informasi". Skripsi Sarjana. Fakultas Ilmu Komputer Universitas Indonesia, 1997.
  • [DAR01] Darmawi, Martin, dkk, “E-Government: Sistem Informasi Kependudukan Daerah Khusus Ibukota Jakarta”, Laporan Student Project, Fasilkom UI Depok, 2001.
  • [FIS01] Fischman, Lothar, “e-Vienna Living Situation Based eGovernment and eDemocracy”, Proceeding 12th International Workshop on Database and Expert System Applications, 3-7 September, 2001, Munich, Germany.
  • [FOR02] Forman, Mark, “E-Government Strategy : Simplified Delivery of Services to Citizens” , Executive Office of The President Office of Management and Budget, Washington, D.C. 20503, 2002.
  • [HAS01] Hasibuan, Zainal, A , “Electronic Government For Good Governance” Fakultas Ilmu Komputer UI, 2001.
  • [JAC01] Jackson, Paul and Noah Curthoys, “E-Government: Development in the US and UK”, Proceeding 12th International Workshop on Database and Expert System Applications, 3-7 September, 2001, Munich, Germany.
  • [KPU02] Komisi Pemilihan Umum, “Grand Design Sistem Informasi KPU”, 2002
  • [MOO00] Moores, Simon, “E-Government in the United Kingdom”, The Information Society in Europe: Policies & Best Practises, 2000. 
  • [TAM01] Tambouris, E, etal “Investigation of Electronic Government”, Archetypon S.A. 236 Sygrou 176-72 Kallithea, Athens, Greece, 2001.
  • [VIL01] Virili, Francesco, “The Italian e-Government Action Plan: Gaining Efficinecy to Rethinking Government”, Proceeding 12th International Workshop on Database and Expert System Applications, 3-7 September, 2001, Munich, Germany.
  • [WAT01] Watson, Anthony and Vincent Cordonnier, “Information Tehcnology Improves Most of the Democratic Voting Processes”, Proceeding 12th International Workshop on Database and Expert System Applications, 3-7 September, 2001, Munich, Germany.
  • [WIM01] Wimmer, Maria and Johanna Krenner, “An Integrated Online One-Stop Government Platform: The eGOV Project”, Proceedings of 9th Interdisciplinary Information Management Talks, Linz, 2001.
  • [WIN01] Windy Aryanto, dkk, “Pengembangan prototipe standardisasi aplikasi egovernment untuk instansi pemerintah” Student Project, Fasilkom UI,, 2003.
  • [ZUL02] Zulhemy, dkk, “Sistem Informasi Penduduk dan Pemilih”, On-going Technical Report, 2002.

LAMPIRAN



PERSONALIA RISET

1. Tenaga Peneliti (maksimum 3 orang termasuk Peneliti Utama)

RINCIAN ANGGARAN
Pilih salah satu (beri tanda √):
(   ) Riset di Lapangan
( √ )Riset di Laboratorium

Rincian biaya RUT XII (lihat Lampiran A, B dan C).











Thursday, 1 June 2017

Piping Fundamentals


INTRODUCTION

Piping systems are like arteries and veins. They carry the lifeblood of modern civilization. In a modern city they transport water from the sources of water supply to the points of distribution; convey waste from residential and commercial buildings and other civic facilities to the treatment facility or the point of discharge. Similarly, pipelines carry crude oil from oil wells to tank farms for storage or to refineries for processing. The natural gas transportation and distribution lines convey natural gas from the source and storage tank forms to points of utilization, such as power plants, industrial facilities, and commercial and residential communities. In chemical plants, paper mills, food processing plants, and other similar industrial establishments, the piping systems are utilized to carry liquids, chemicals, mixtures, gases, vapors, and solids from one location to another. The fire protection piping networks in residential, commercial, industrial, and other buildings carry fire suppression fluids, such as water, gases, and chemicals to provide protection of life and property. The piping systems in thermal power plants convey high-pressure and high-temperature steam to generate electricity. Other piping systems in a power plant transport high- and low-pressure water, chemicals,
low-pressure steam, and condensate. Sophisticated piping systems are used to process and carry hazardous and toxic substances. The storm and wastewater piping systems transport large quantities of water away from towns, cities, and industrial and similar establishments to safeguard life, property, and essential facilities. In health facilities, piping systems are used to transport gases and fluids for
medical purposes. The piping systems in laboratories carry gases, chemicals, vapors, and other fluids that are critical for conducting research and development. In short, the piping systems are an essential and integral part of our modern civilization just as arteries and veins are essential to the human body.
The design, construction, operation, and maintenance of various piping systems involve understanding of piping fundamentals, materials, generic and specific design considerations, fabrication and installation, examinations, and testing and inspection requirements, in addition to the local, state and federal regulations.

PIPING

Piping includes pipe, flanges, fittings, bolting, gaskets, valves, and the pressure containing portions of other piping components. It also includes pipe hangers and supports and other items necessary to prevent over pressurization and over stressing of the pressure-containing components. It is evident that pipe is one element or a part of piping. Therefore, pipe sections when joined with fittings, valves, and other mechanical equipment and properly supported by hangers and supports, are called piping.

PIPE

Pipe is a tube with round cross section conforming to the dimensional requirements of

  • ASME B36.10M Welded and Seamless Wrought Steel Pipe
  • ASME B36.19M Stainless Steel Pipe


PIPE SIZE

Initially a system known as iron pipe size (IPS) was established to designate the pipe size. The size represented the approximate inside diameter of the pipe in inches. An IPS 6 pipe is one whose inside diameter is approximately 6 inches (in). Users started to call the pipe as 2-in, 4-in, 6-in pipe and so on. To begin, each pipe size was produced to have one thickness, which later was termed as standard (STD) or standard weight (STD. WT.). The outside diameter of the pipe was standardized. As the industrial requirements demanded the handling of higher-pressure fluids, pipes were produced having thicker walls, which came to be known as extra strong (XS) or extra heavy (XH). The higher pressure requirements increased further, requiring thicker wall pipes. Accordingly, pipes were manufactured with double extra strong (XXS) or double extra heavy (XXH) walls while the standardized outside diameters are unchanged.

With the development of stronger and corrosion-resistant piping materials, the need for thinner wall pipe resulted in a new method of specifying pipe size and wall thickness. The designation known as nominal pipe size (NPS) replaced IPS, and the term schedule (SCH) was invented to specify the nominal wall thickness of pipe.

Nominal pipe size (NPS) is a dimensionless designator of pipe size. It indicates standard pipe size when followed by the specific size designation number without an inch symbol. For example, NPS 2 indicates a pipe whose outside diameter is 2.375 in. The NPS 12 and smaller pipe has outside diameter greater than the size designator (say, 2, 4, 6, . . .). However, the outside diameter of NPS 14 and larger pipe is the same as the size designator in inches. For example, NPS 14 pipe has an outside diameter equal to 14 in. The inside diameter will depend upon the pipe wall thickness specified by the schedule number. Refer to ASME B36.10M or ASME B36.19M. Refer to App. E2 or E2M.

Diameter nominal (DN) is also a dimensionless designator of pipe size in the metric unit system, developed by the International Standards Organization (ISO). It indicates standard pipe size when followed by the specific size designation number
                .
Pipe Wall Thickness

Schedule is expressed in numbers (5, 5S, 10, 10S, 20, 20S, 30, 40, 40S, 60, 80, 80S, 100, 120, 140, 160). A schedule number indicates the approximate value of the expression 1000 P/S, where P is the service pressure and S is the allowable stress, both expressed in pounds per square inch (psi). The higher the schedule number, the thicker the pipe is. The outside diameter of each pipe size is standardized. Therefore, a particular nominal pipe size will have a different inside diameter depending upon the schedule number specified.

Note that the original pipe wall thickness designations of STD, XS, and XXS have been retained; however, they correspond to a certain schedule number depending upon the nominal pipe size. The nominal wall thickness of NPS 10 and smaller schedule 40 pipe is same as that of STD. WT. pipe. Also, NPS 8 and smaller schedule 80 pipe has the same wall thickness as XS pipe. The schedule numbers followed by the letter S are per ASME B36.19M, and they are primarily intended for use with stainless steel pipe. The pipe wall thickness specified by a schedule number followed by the letter S may or may not be the same as that specified by a schedule number without the letter S. Refer to ASME B36.19M and ASME B36.10M.10,11

ASME B36.19M does not cover all pipe sizes. herefore, the dimensional requirements of ASME B36.10M apply to stainless steel pipe of the sizes and schedules not covered by ASME B36.19M.

PIPING CLASSIFICATION
It is usual industry practice to classify the pipe in accordance with the pressure temperature rating system used for classifying flanges. However, it is not essential
that piping be classified as Class 150, 300, 400, 600, 900, 1500, and 2500. The piping rating must be governed by the pressure-temperature rating of the weakest pressure containing item in the piping. The weakest item in a piping system may be a fitting made of weaker material or rated lower due to design and other considerations. Table A1.2 lists the standard pipe class ratings based on ASME B16.5 along with corresponding pression nominal (PN) rating designators. Pression nominal is the
French equivalent of pressure nominal.

In addition, the piping may be classified by class ratings covered by other ASME standards, such as ASME B16.1, B16.3, B16.24, and B16.42. A piping system may be rated for a unique set of pressures and temperatures not covered by any standard.

Pression nominal (PN) is the rating designator followed by a designation number, which indicates the approximate pressure rating in bars. The bar is the unit of pressure, and 1 bar is equal to 14.5 psi or 100 kilopascals (kPa). Table A1.2 provides a cross-reference of the ASME class ratings to PN rating designators. It is evident that the PN ratings do not provide a proportional relationship between different PN numbers, whereas the class numbers do. Therefore, it is recommended that class numbers be used to designate the ratings. Refer to Chap. B2 for a more detailed discussion of class rating of piping systems.

GENERAL DEFINITIONS

Absolute Viscosity. Absolute viscosity or the coefficient of absolute viscosity is a measure of the internal resistance. In the centimeter, gram, second (cgs) or metric system, the unit of absolute viscosity is the poise (abbreviated P), which is equal to 100 centipoise (cP). The English units used to measure or express viscosity are slugs per foot-second or pound force seconds per square foot. Sometimes, the English units are also expressed as pound mass per foot-second or poundal seconds
per square foot. Refer to Chap. B8 of this handbook.

Adhesive Joint. A joint made in plastic piping by the use of an adhesive substance which forms a continuous bond between the mating surfaces without dissolving either one of them. Refer to Part D of this handbook.

Air-Hardened Steel. A steel that hardens during cooling in air from a temperature above its transformation range

Alloy Steel. A steel which owes its distinctive properties to elements other than carbon. Steel is considered to be alloy steel when the maximum of the range given for the content of alloying elements exceeds one or more of the following limits :

  • Manganese      1.65 percent 
  • Silicon             0.60 percent 
  • Copper             0.60 percent 

or a definite range or a definite minimum quantity of any of the following elements is specified or required within the limits of the recognized field of constructional alloy steels:

  • Aluminum                                             Nickel 
  • Boron                                                    Titanium 
  • Chromium (up to 3.99 percent)            Tungsten 
  • Cobalt                                                   Vanadium 
  • Columbium                                           Zirconium 
  • Molybdenum 

or any other alloying element added to obtain a desired alloying effect.

Small quantities of certain elements are unavoidably present in alloy steels. In many applications, these are not considered to be important and are not specified or required. When not specified or required, they should not exceed the following amounts:

  • Copper                       0.35 percent 
  • Chromium                 0.20 percent 
  • Nickel                        0.25 percent 
  • Molybdenum             0.06 percent 


Ambient Temperature. The temperature of the surrounding medium, usually used to refer to the temperature of the air in which a structure is situated or a device operates.

Anchor. A rigid restraint providing substantially full fixation, permitting neither translatory nor rotational displacement of the pipe.

Annealing. Heating a metal to a temperature above a critical temperature and holding above that range for a proper period of time, followed by cooling at a suitable rate to below that range for such purposes as reducing hardness, improving machinability, facilitating cold working, producing a desired microstructure, or obtaining desired mechanical, physical, or other properties.(A softening treatment is often carried out just below the critical range which is referred to as a subcritical annealing.)

Arc Cutting. A group of cutting processes in which the severing or removing of metals is effected by melting with the heat of an arc between an electrode and the base metal (includes carbon, metal, gas metal, gas tungsten, plasma, and air carbon arc cutting). See also Oxygen Cutting.

Arc Welding. A group of welding processes in which coalescence is produced by heating with an electric arc or arcs, with or without the application of pressure and with or without the use of filler metal

Assembly. The joining together of two or more piping components by bolting, welding, caulking, brazing, soldering, cementing, or threading into their installed location as specified by the engineering design.

Automatic Welding. Welding with equipment which performs the entire welding operation without constant observation and adjustment of the controls by an operator. The equipment may or may not perform the loading and unloading of the work.3,5

Backing Ring. Backing in the form of a ring that can be used in the welding of piping to prevent weld spatter from entering a pipe and to ensure full penetration of the weld to the inside of the pipe wall.

Ball Joint. A component which permits universal rotational movement in a piping system.

Base Metal. The metal to be welded, brazed, soldered, or cut. It is also referred to as parent metal.
Bell-Welded Pipe. Furnace-welded pipe produced in individual lengths from cut length skelp, having its longitudinal butt joint forge-welded by the mechanical pressure developed in drawing the furnace-heating skelp through a cone-shaped die (commonly known as a welding bell), which serves as a combined forming and welding die.

Bevel. A type of edge or end preparation.

Bevel Angle. The angle formed between the prepared edge of a member and a plane perpendicular to the surface of the member. See Fig. A1.1.

Blank Flange. A flange that is not drilled but is otherwise complete.

Blind Flange. A flange used to close the end of a pipe. It produces a blind end which is also known as a dead end.

Bond. The junction of the weld metal and the base metal, or the junction of the base metal parts when weld metal is not present. See Fig. A1.2.

Branch Connection. The attachment of a branch pipe to the run of a main pipe with or without the use of fittings.

Braze Welding. A method of welding whereby a groove, fillet, plug, or slot weld is made using a nonferrous filler metal having a melting point below that of the base metals, but above 800 F. The filler metal is not distributed in the joint by capillary action. (Bronze welding, the term formerly used, is a misnomer.)
Brazing. A metal joining process in which coalescence is produced by use of a nonferrous filler metal having a melting point above 800 F but lower than that of the base metals joined. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.

Butt Joint. A joint between two members lying approximately in the same plane.

Butt Weld. Weld along a seam that is butted edge to edge. See Fig. A1.3.

Bypass. A small passage around a large valve for warming up a line. An emergency connection around a reducing valve, trap, etc., to use in case it is out of commission.
Carbon Steel. A steel which owes its distinctive properties chiefly to the carbon (as distinguished from the other elements) which it contains. Steel is considered to be carbon steel when no minimum content is specified or required for aluminum, boron, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, or zirconium or for any other element added to obtain a desired alloying effect; when the specified minimum for copper does not exceed 0.40 percent; or when the maximum content specified for any of the following elements does not exceed the percentages noted: manganese, 1.65 percent; silicon, 0.60 percent; copper, 0.60 percent.

Cast Iron. A generic term for the family of high carbon-silicon-iron casting alloys including gray, white, malleable, and ductile iron.

Centrifugally Cast Pipe. Pipe formed from the solidification of molten metal in a rotating mold. Both metal and sand molds are used. After casting, if required the pipe is machined, to sound metal, on the internal and external diameters to the surface roughness and dimensional requirements of the applicable material specification.

Certificate of Compliance. A written statement that the materials, equipment, or services are in accordance with the specified requirements. It may have to be supported by documented evidence.

Certified Material Test Report (CMTR). A document attesting that the material is in accordance with specified requirements, including the actual results of all required chemical analyses, tests, and examinations.

Chamfering. The preparation of a contour, other than for a square groove weld, on the edge of a member for welding.

Cold Bending. The bending of pipe to a predetermined radius at any temperature below some specified phase change or transformation temperature but especially at or near room temperature. Frequently, pipe is bent to a radius of 5 times the nominal pipe diameter.

Cold Working. Deformation of a metal plastically. Although ordinarily done at room temperature, cold working may be done at the temperature and rate at which strain hardening occurs. Bending of steel piping at 1300 F (704 C) would be considered a cold-working operation.

Companion Flange. A pipe flange suited to connect with another flange or with a flanged valve or fitting. A loose flange which is attached to a pipe by threading, van stoning, welding, or similar method as distinguished from a flange which is cast integrally with a fitting or pipe.

Consumable Insert. Replaced filler metal which is completely fused into the root of the joint and becomes part of the weld. See Fig. A1.4.

Continuous-Welded Pipe. Furnace welded pipe produced in continuous lengths from coiled skelp and subsequently cut into individual lengths, having its longitudinal butt joint forge welded by the mechanical pressure developed in rolling the hot-formed skelp through a set of round pass welding
rolls.

Contractor. The entity responsible for furnishing materials and services for fabrication and installation of piping and associated equipment.

Control Piping. All piping, valves, and fittings used to interconnect air, gas, or hydraulically operated control apparatus or instrument transmitters and receivers.

Controlled Cooling. A process of cooling from an elevated temperature in a predetermined manner to avoid hardening, cracking, or internal damage or to produce a desired metallurgical micro structure. This cooling usually follows the final hot-forming or post heating operation.

Corner Joint. A joint between two members located approximately at right angles to each other in the form of an L. See Fig. A1.5.

Coupling. A threaded sleeve used to connect two pipes. Commercial couplings have internal threads to fit external threads on pipe.

Covered Electrode. A filler metal electrode, used in arc welding, consisting of a metal core wire with a relatively thick covering which provides protection for the molten metal from the atmosphere, improves the properties of the weld metal, and stabilizes the arc. Covered electrodes are extensively used in shop fabrication and field erection of piping of carbon, alloy, and stainless steels.

Crack. A fracture-type imperfection characterized by a sharp tip and high ratio of length and depth to opening displacement.

Creep or Plastic Flow of Metals. At sufficiently high temperatures, all metals flow under stress. The higher the temperature and stress, the greater the tendency to plastic flow for any given metal.

Cutting Torch. A device used in oxygen, air, or powder cutting for controlling and directing the gases used for preheating and the oxygen or powder used for cutting the metal.

Defect. A flaw or an imperfection of such size, shape, orientation, location, or properties as to be rejectable per the applicable minimum acceptance standards.

Density. The density of a substance is the mass of the substance per unit volume. It may be expressed in a variety of units.

Deposited Metal. Filler metal that has been added during a welding operation. 

Depth of Fusion. The distance that fusion extends into the base metal from the surface melted during welding. See Fig. A1.6.
Designer. Responsible for ensuring that the engineering design of piping complies with the requirements of the applicable code and standard and any additional requirements established by the owner.

Dew Point. The temperature at which the vapor condenses when it is cooled at constant pressure.

Dilatant Liquid. If the viscosity of a liquid increases as agitation is increased at constant temperature, the liquid is termed dilatant. Examples are clay slurries and candy compounds.

Discontinuity. A lack of continuity or cohesion; an interruption in the normal physical structure of material or a product.

Double Submerged Arc-Welded Pipe. Pipe having a longitudinal butt joint produced by at least two passes, one of which is on the inside of the pipe. Coalescence is produced by heating with an electric arc or arcs between the bare metal electrode or electrodes and the work. The welding is shielded by a blanket of granular, fusible material on the work. Pressure is not used, and filler metal for the inside and outside welds is obtained from the electrode or electrodes.

Ductile Iron. A cast ferrous material in which the free graphite is in a spheroidal form rather than a fluke form. The desirable properties of ductile iron are achieved by means of chemistry and a ferritizing heat treatment of the castings.

Eddy Current Testing. This is a nondestructive testing method in which eddy current flow is induced in the test object. Changes in the flow caused by variations in the object are reflected into a nearby coil or coils for subsequent analysis by suitable instrumentation and techniques.

Edge Joint. A joint between the edges of two or more parallel or nearly parallel members.

Edge Preparation. The contour prepared on the edge of a member for welding. See Fig. A1.7.
Electric Flash-Welded Pipe. Pipe having a longitudinal butt joint in which coalescence is produced simultaneously  over the entire area of abutting surfaces by the heat obtained from resistance to
the flow of electric current between the two surfaces and by the application of pressure after heating is substantially completed. Flashing and upsetting are accompanied by expulsion of metal from the joint.

Electric Fusion-Welded Pipe. Pipe having a longitudinal or spiral butt joint in which coalescence is produced in the preformed tube by manual or automatic electric arc welding. The weld may be single or double and may be made with or without the use of filler metal.

Electric Resistance-Welded Pipe. Pipe produced in individual lengths or in continuous lengths from coiled skelp and subsequently cut into individual lengths having a longitudinal butt joint in which coalescence is produced by the heat obtained from resistance of the pipe to the flow of electric current in a circuit of which the pipe is a part and by the application of pressure.

Electrode. See Covered Electrode.

End Preparation. The contour prepared on the end of a pipe, fitting, or nozzle for welding. The particular preparation is prescribed by the governing code. Refer to Chap. A6 of this handbook.

Engineering Design. The detailed design developed from process requirements and conforming to established design criteria, including all necessary drawings and specifications, governing a piping installation.

Equipment Connection. An integral part of such equipment as pressure vessels, heat exchangers, pumps, etc., designed for attachment of pipe or piping components.

Erection. The complete installation of a piping system, including any field assembly, fabrication, testing, and inspection of the system.

Erosion. Destruction of materials by the abrasive action of moving fluids, usually accelerated by the presence of solid particles.

Examination. The procedures for all visual observation and nondestructive testing

Expansion Joint. A flexible piping component which absorbs thermal and/or terminal movement.

Extruded Nozzles. The forming of nozzle (tee) outlets in pipe by pulling hemispherically or conically shaped dies through a circular hole from the inside of the pipe. Although some cold extruding is done, it is generally performed on steel after the area to be shaped has been heated to temperatures between 2000 and 1600 F (1093 and 871 C).

Extruded Pipe. Pipe produced from hollow or solid round forgings, usually in a hydraulic extrusion press. In this process the forging is contained in a cylindrical die. Initially a punch at the end of the extrusion plunger pierces the forging. The extrusion plunger then forces the contained billet between the cylindrical die and the punch to form the pipe, the latter acting as a mandrel.
One variation of this process utilizes auto frettage (hydraulic expansion) and heat treatment, above the recrystallization temperature of the material, to produce a wrought structure.

Fabrication. Primarily, the joining of piping components into integral pieces ready for assembly. It includes bending, forming, threading, welding, or other operations upon these components, if not part of assembly. It may be done in a shop or in the field.

Face of Weld. The exposed surface of a weld on the side from which the welding was done.

Filler Metal. Metal to be added in welding, soldering, brazing, or braze welding.

Fillet Weld. A weld of an approximately triangular cross section joining two surfaces approximately at right angles to each other in a lap joint, tee joint, corner joint, or socket weld.5 See Fig. A1.8.


Fire Hazard. Situation in which a material of more than average combustibility or explodibility exists in the presence of a potential ignition source.

Flat-Land Bevel. A square extended root face preparation extensively used in inert-gas, root-pass welding of piping. See Fig. A1.9
Flat Position. The position of welding which is performed from the upper side of the joint, while the face of the weld is approximately horizontal. See Fig. A1.10.

Flaw. An imperfection of unintentional discontinuity which is detectable by a nondestructive examination.

Flux. Material used to dissolve, prevent accumulation of, or facilitate removal of oxides and other undesirable substances during welding, brazing, or soldering.

Flux-Cored Arc Welding (FCAW ). An arc welding process that employs a continuous tubular filler metal (consumable) electrode having a core of flux for shielding. Adding shielding may or may not be obtained from an externally supplied gas or gas mixture.

Forge Weld. A method of manufacture similar to hammer welding. The term forge welded is applied more particularly to headers and large drums, while hammer welded usually refers to pipe.

Forged and Bored Pipe. Pipe produced by boring or trepanning of a forged billet.

Full-Fillet Weld. A fillet weld whose size is equal to the thickness of the thinner member joined.

Fusion. The melting together of filler and base metal, or of base metal only, which results in coalescence.

Fusion Zone. The area of base metal melted as determined on the cross section of a weld. See Fig. A1.11.
Galvanizing. A process by which the surface of iron or steel is covered with a layer of zinc. 

Gas Metal Arc Welding (GMAW ). An arc welding process that employs a continuous solid filler metal (consumable) electrode. Shielding is obtained entirely from an externally supplied gas or gas mixture.4,8 (Some methods of this process have been called MIG or CO2 welding.)

Gas Tungsten Arc Welding (GTAW ). An arc welding process that employs a tungsten (non consumable) electrode. Shielding is obtained from a gas or gas mixture. Pressure may or may not be used, and filler metal may or may not be used. (This process has sometimes been called TIG welding.) When shielding is obtained by the use of an inert gas such as helium or argon, this process is called inert-gas tungsten arc welding.

Gas Welding. Welding process in which coalescence is produced by heating with a gas flame or flames, with or without the application of pressure and with or without the use of filler metal.

Groove. The opening provided for a groove weld.

Groove Angle. The total included angle of the groove between parts to be joined by a groove weld. See Fig. A1.12.
Groove Face. That surface of a member included in the groove. See Fig. A1.13.

Groove Radius. The radius of a J or U groove. See Fig. A1.14.

Groove Weld. A weld made in the groove between two members to be joined. The standard type of groove welds are square, single-V, single-bevel, single-U, single-J, double-V, double-U, double-bevel, double-J, and flat-land single, and double-V groove welds. See Fig. A1.15 for a typical groove weld.
Hammer Weld. Method of manufacturing large pipe (usually NPS 20 or DN 500 and larger) by bending a plate into circular form, heating the overlapped edges to a welding temperature, and welding the longitudinal seam with a power hammer applied to the outside of the weld while the inner side is supported on an overhung anvil.

Hangers and Supports. Hangers and supports include elements which transfer the load from the pipe or structural attachment to the supporting structure or equipment. They include hanging-type fixtures such as hanger rods, spring hangers, sway braces, counterweights, turnbuckles, struts, chains, guides, and anchors and bearing-type fixtures such as saddles, bases, rollers, brackets, and sliding supports.

Header. A pipe or fitting to which a number of branch pipes are connected.

Heat-Affected Zone. That portion of the base metal which has not been melted but whose mechanical properties or micro structure has been altered by the heat of welding or cutting. See Fig. A1.16.
Heat Fusion Joint. A joint made in thermoplastic piping by heating the parts sufficiently to permit fusion of the materials when the parts are pressed together.

Horizontal Fixed Position. In pipe welding, the position of a pipe joint in which the axis of the pipe is approximately horizontal and the pipe is not rotated during the operation.

Horizontal-Position Fillet Weld. Welding is performed on the upper side of an approximately horizontal surface and against an approximately vertical surface. See Fig. A1.17.

Horizontal-Position Groove Weld. The position of welding in which the weld axis lies in an approximately horizontal plane and the face of the weld lies in an approximately vertical plane. See Fig. A1.18.
Horizontal Rolled Position. The position of a pipe joint in which welding is performed in the flat position by rotating the pipe. See Fig. A1.19.

Hot Bending. Bending of piping to a predetermined radius after heating to a suitably high temperature for hot working. On many pipe sizes, the pipe is firmly packed with sand to avoid wrinkling and excessive out-of-roundness.

Hot Taps. Branch piping connections made to operating pipelines, mains, or other facilities while they are in operation.

Hot Working. The plastic deformation of metal at such a temperature and rate that strain hardening does not occur. Extruding or swaging of chrome-moly piping at temperatures between 2000 and 1600 F (1093 and 871 C) would be considered hot-forming or hot-working operations.

Hydraulic Radius. The ratio of area of flowing fluid to the wetted perimeter

Root Edge. A root face of zero width.

Root Face. That portion of the groove face adjacent to the root of the joint. This portion is also referred to as the root land. See Fig. A1.21.
Single-Bevel-, Single-J, Single-U, Single-V-Groove Welds. All are specific types of groove welds and are illustrated in Fig. A1.22.
Single-Welded Butt Joint. A butt joint welded from one side only.

Size of Weld. For a groove weld, the joint penetration, which is the depth of chamfering plus the root penetration. See Fig. A1.21. For fillet welds, the leg length of the largest isosceles right triangle which can be inscribed within the fillet-weld cross section. See Fig. A1.23.
Welding Rod. Filler metal, in wire or rod form, used in gas welding and brazing procedures and those arc welding processes where the electrode does not furnish the filler metal.

Welding Sequence. The order of making the welds in a weldment.

Weldment. An assembly whose component parts are to be joined by welding.

Wrought Iron. Iron refined in a plastic state in a puddling furnace. It is characterized by the presence of about 3 percent of slag irregularly mixed with pure iron and about 0.5 percent carbon and other elements in solution.

Wrought Pipe. The term wrought pipe refers to both wrought steel and wrought iron. Wrought in this sense means ‘‘worked,’’ as in the process of forming furnace welded pipe from skelp or seamless pipe from plates or billets. The expression wrought pipe is thus used as a distinction from cast pipe. Wrought pipe in this sense should not be confused with wrought-iron pipe, which is only one variety of wrought pipe. When wrought-iron pipe is referred to, it should be designated by its complete name.







PROPOSAL PENELITIAN

PROPOSAL PENELITIAN Aplikasi e-Government untuk Tata Kelola Yang Baik: Dari Perencanaan Strategis SI ke Pengembangan SI (e-Governme...